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On the generation of surface waves by shear flows 
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SUMMARY 
A mechanism for the generation of surface waves by a parallel’ 

shear flow U(y)  is developed on the basis of the inviscid Orr- 
Sommerfeld equation. It is found that the rate at which energy 
is transferred to a wave of speed c is proportional to the profile 
curvature - Urr(y) at that elevation where U = c. The result is 
applied to the generation of deep-water gravity waves by wind. 
An approximate solution to the boundary value problem is 
developed for a logarithmic profile and the corresponding spectral 
distribution of the energy transfer coefficient calculated as a 
function of wave speed. The minimum wind speed for the 
initiation of gravity waves against laminar dissipation in water 
having negligible mean motion is found to be roughly 100 cm/sec. 
A spectral mean value of the sheltering coefficient,:/as defined by 
Munk, is found to be in order-of-magnitude agreement with total 
wave drag measurements of Van Dorn. It is concluded that the 
model yields results in qualitative agreement with observation, but 
truly quantitative comparisons would require a more accurate 
solution of the boundary value problem and more precise data on 
wind profiles than are presently available. The results also may 
have application to the flutter of membranes and panels. 

1. INTRODUCTION 
The primary aim of the following analysis is the prediction of the energy- 

transfer from a prescribed two-dimensional parallel shear flow in an inviscid 
incompressible fluid to a surface wave of prescribed wavelength and wave 
speed. The principal result to be obtained is that this transfer is propor- 
tional to the curvature of the velocity profile at that point in the profile where 
the mean air speed is equal to the wave speed. The formulation, as developed 
in $3-5, is valid for surface waves of a rather general type and may be of 
some importance in the flutter of thin panels or membranes, but we shall 
focus our attention primarily on two-dimensional deep-water gravity waves. 

We shall not attempt to develop the mechanism by which the surface 
wave energy is, dissipated except in the initial formation of gravity waves 
on a previously smooth surface, and even in this case it will be necessary to- 
introduce assumptions which would appear more questionable than those 
implied in the original model for energy transfer from the air to the surface: 
wave. 
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Previous models of wave formation have been critically reviewed by 
The mathematical (as opposed to empirical) models may be 

(1) The Kelvin-Helmholtz model (Lamb 1945, $268)  assumes a tangential 
discontinuity between uniform flows in air and water and predicts a 
critical wind speed of 650 cm/sec for the initiation of surface waves. 

(2) Jeffreys’ (1925) sheltering model (Lamb 1945, $348) assumes a 
periodic component of wind stress in phase with the wave slope, 
which is supposed ot originate in the separation of the air flow over 
the wave crests and is described by a ‘ sheltering coefficient ’. No 
method of calculating this coefficient is given, however, and the form 
of the results would be the same for other mechanisms. 

(3) The laminar $ow models of Wuest (1949) aud Lock (1954) assume 
laminar flow in both air and water and yield the critical wind speed 
as in the corresponding analyses of stability for channel and boundary- 
layer flows. 

(4) Eckart’s (1953 b) stochastic model assumes an ensemble of gusts 
having prescribed durations in time and space. The details do not 
permit brief summary, but it should be noted that the assumed wind 
structure differs widely from that considered here. It may approxi- 
mate a storm more closely, but it would be far more difficult to 
reproduce in a controlled experiment. 

The model to be developed here improves on the Kelvin-Helmholtz 
model by allowing for distributed, rather than concentrated vorticity”, 
resembles Jeffreys’ model in predicting an equivalent value for his sheltering 
coefficient, and is similar to the investigations of Wuest and Lock inasmuch 
as it leads to a boundary-layer stability problem. We define this model by 
the following ‘assumptions. 

We assume the air to be inviscid and incompressible and, 
in the absence of the wave motion, to have the prescribed mean shear 
flow U(y).  The subsequent disturbances in velocity and pressure 
associated with the wave motion will be assumed two-dimensional 
and sufficiently small to justify the linearization of the equations of 
motion. Turbulent fluctuations, albeit decisive in maintaining the 
mean shear flow, are neglected in the perturbation equations. The 
end result of these assumptions is the inviscid Orr-Sommerfeld 
equation (3.4). 

We assume the motion of the water to be inviscid, 
incompressible, and irrotational, and the slope of the displaced 
surface to be small. Following Jeffreys (1925 ; Lamb 1945, $ 348), 
the dissipation in the water will be calculated in the second approxi- 
mation as a perturbation on the inviscid flow, assuming laminar 

* The assumption of a concentrated vortex sheet in the Kelvin-Helmholtz model 

Ursell(l956). 
briefly characterized as follows. 

(a )  The air. 

(b )  The water. 

was criticized originally by Rayleigh (1880; also 1945, § 366). 
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motion and a free surface, but this result will appear only in the 
calculation of minimum wind speed ($6)". We shall neglect any 
mean motion of the water that may be induced by the mean air flow. 
This neglect could be justified if either the actual mean velocity 
were small compared with the wave speed (so that it could only 
produce negligible inertial forces) or were laminar and confined to 
a layer thin compared with the wavelength. 

We assume that the access of inertia associated with 
the disturbance in the air has a negligible effect on the magnitude 
of the surface wave speed, only that component of the aerodynamic 
force that is in phase with the wave slope being regarded as important. 
This assumption, which is introduced only to simplify the algebraic 
operations by virtue of an expansion in the specific gravity of the 
air (and which is identical with that made in Jeffreys' sheltering 
theory), rules out the Kelvin-Helmholtz mechanism of wave 
formation a priori. 

Referring to the assumption of an inviscid fluid, an appropriate Reynolds 

( c )  Wave speed. 

number for travelling waves in a slightly viscous fluid is 

R = I U -  c[/kv = 1 U -  c ~ X / ~ T U ,  (1.1) 
where U, c, A, v, and k denote the speed of the undisturbed flow, wave 
speed (phase velocity), wavelength, kinematic viscosity, and wave number. 
R may be evaluated for either air or water, but it will attain its smallest values 
in the air, both because of the higher kinematic viscosity and because U -  c 
may tend to zero. In  the examples treated subsequently ($ 6, $7) R will 
have values of the order of lo3 at the outer edge of the boundary layer, 
though it tends to zero at the critical point where U = c. This implies 
that viscous forces in the air are likely to be important only in the neighbour- 
hood of U = c, where their omission leads to a singularity in the equations 
of motion (33). Previous studies of channel and boundary-layer flows 
(Lin 1955, ch. 5) suggest that this singularity provides an adequate repre- 
sentation of viscous effects (on growing waves) for sufficiently large average 
values of R. We specifically remark, on the other hand, that (in contrast 
t o  the Poiseuille or boundary-layer stability problems) the perturbation 
inertia forces for sufficiently large values of ck/v may be expected to dominate 
the perturbation friction forces in the immediate neighbourhood of the 
boundary by virtue of the surface wave there. This implies, in particular, 
that the viscous drag forces of the air are negligible compared with the 
normal pressure in their effect on the surface wave (cf. preceding footnote). 

* It  might be thought that the air, behaving as in the boundary layer over an 
oscillating plane (cf. Lamb 1945, 5 351) and having the higher kinematic viscosity, 
could contribute more damping than the water acting as a free surface (Lamb 1945, 
5 348). The ratio of =damping coefficients for small, laminar motions is found 
to be (pa/4plc)[c4/2gv,(c-U)]*, where c denotes wave speed, v kinematic viscosity, 

true viscosity, and C-u an appropriate average through the region of unsteady 
viscous influence. This ratio is about 0.1 in the calculation of the minimum wind 
speed (5 6). 
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The foregoing arguments appear sufficient to justify an inviscid model 
for the determination of a first approximation to the disturbed motion of 
the air and the consequent energy transfer to the wave, but they throw no 
light on the perturbation Reynolds stresses associated with the interaction 
between turbulent fluctuations in the original and perturbed flows (see 
Appendix). It is implicit in our model that these also are negligible com- 
pared with the perturbation inertia forces except in the neighbourhood of 
U = c. It would be difficult to provide an adequate a priori justification 
of this hypothesis, but it appears reasonable for gravity waves in consequence 
of their relatively long wavelength. 

It perhaps may be regarded as obvious that, on the one hand, models 
such as we consider here represent a gross simplification of the real problem 
of generation of surface waves by wind and cannot be expected to yield 
quantitative results except under very special circumstances ; but that, 
on the other hand, our present very limited knowledge of turbulent flows 
makes substantial theoretical progress unlikely without appeal to simplified 
models. The ranges of validity of such models must be established primarily 
by comparison with experimental data ; this is scarcely available in suffi- 
ciently detailed and reliable form to warrant firm conclusions at the present 
time, but it seems unlikely that any single model (for which mathematical 
analysis is feasible) will prove adequate for all circumstances*. 

2. EQUATION OF MOTION FOR SURFACE WAVES 

We consider first the equation governing the propagation of a small, but 
otherwise rather general type of surface wave that gives rise to an aero- 
dynamic pressurep, acting on the surface. Let m be the effective mass per 
unit area and L a linear operator such that Lq gives the stress resisting a 
deformation 9 of the surface ; then the equation of motion reads 

We assume the surface wave to have the form 

where a denotes the amplitude, k the wave number, c the phase velocity, 
x a coordinate measured in the direction of propagation, and t the time; 
here and subsequently, following the usual convention, the real parts of 
complex quantities are implied in the final interpretation. We also assume 
the aerodynamic pressure to be represented by 

Lq + mqtt = -Pa- (2.1)) 

q(x ,  t )  = aeik(z4t), (2.2) 

Pa = (a + i&aU? b, (2-3) 
* “ How does wind acting on water give rise to waves ? This is a question which 

has never been satisfactorily answered in detail. This is partly because we do not 
know the exact constitution of an ocean wave, nor of the wind, nor the exact way in 
which the one acts upon the other. Notwithstanding our ignorance of the details, 
the general nature of the operation has been fairly well made out.” (Durand 1896). 
Ursell, in his (1956) survey of the problem, opens with the statement that “ wind 
blowing over a water surface generates waves in the water by a physical process 
which cannot be regarded as known ” and concludes that “ the present state of our- 
knowledge is profoundly unsatisfactory ”. 
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where pa  denotes the density of the air, U, an as yet arbitrary reference 
.speed for the air, kr, (in magnitude) the local slope of the wave, and a+iP 
a dimensionless pressure coefficient; in general, a and are functions 
of both c and k which depend on the solution to the aerodynamic boundary 
value problem ($ 3). 

which is an eigenvalue equation relating c and k for the assumed wave motion. 
The operator L may be eliminated from (2.4) by referring it to the free 

surface wave speed c, in the absence of the aerodynamic pressure. In the 
latter event (2.4) reduces to 

Substitution of (2.2) and (2.3) in (2.1) yields 

Lr, - mkzczr, = - (a  + i p )p ,  U,Z kr,, (2.4) 

Lv = mkzcir,, (2.5) 

which implies that mk2ci is the eigenvalue of the operator L. 
e(2.5) in (2.4), we may place the result in the form 

where s denotes the relative mass parameter 

We emphasize that (2.6) does not represent an explicit solution for c inasmuch 
as a and p exhibit an implicit dependence thereon. 

We turn now to the special case of gravity waves on deep water of density 
.pw. The effective mass then is p , / k ,  while the operator L is simply pwg, 
and we have (cf. Lamb 1945, 0 228, $229) 

c: = g/k ,  s = PalPw. (2.8 a, b) 

We remark that in the Kelvin-Helmholtz model (Lamb 1945, $268) 
a + i p  = - 1 if U, is chosen as U -  c, where U is the (constant) air speed; 
in this approximation the aerodynamic pressure is directly proportional 
to, but 90" out of phase with, the wave slope and represents an access of 
inertia. In Jeffreys' model (Lamb 1945, $348), on the other hand, only the 
component of aerodynamic pressure in phase with the wave slope is 
.considered, and /I corresponds to his sheltering coefficient if U, = U -  c. 

We shall attempt a solution of the eigenvalue equation (2.6) only for those 
values of c and k that render the magnitude of the third term small compared 
with ci, on which hypothesis we may take c = c, as a zeroth approximation, 
evaluate a + ip with c = cw, and take 

Substituting 

c2 = c$+s (a+ ip )Uf ,  (2.6) 

s = p,/mk. (2.7) 

c = c,[ 1 + +s(a + ip)( Ul/cw)2] (2.9) 
as a first approximation. If we define the negative damping ratio 5 as the 
energy rate of growth per radian*, the first approximation to 5, (a denoting 
air) is given by (now dropping the subscript w from c, as is permissible in 
this approximation) 

Our primary problem, then, is the determination of 8. 

q per unit time is &kc. 

5, = 24{c}/W{c} = sp( U1/C)? (2.10) 

* The corresponding logarithmic decrement is -T[, while the rate of growth of 
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The approximations (2.9) and (2.10) correspond to what we may designate 
as weak coupling of the two fluids. In  the Kelvin-Helmholtz model, on 
the other hand, we have strong coupling, and at the transition from stability 
to instability [U = Urn, s < 1, see Lamb 1945, $268(4)] 

where crn (which depends on surface tension, as well as gravity) is the 
minimum value of c,. We infer from this that the approximation (2.9) 
may be regarded as valid only if 

The fact that waves do begin to form at wind speeds very much less than the 
Kelvin-Helmholtz value U, implies that the inequality (2.12) may be 
assumed in describing incipient wave formation. Of course, (2.6) could 
be solved without further approximation, but the boundary value problem 
to be solved ($3) would be far more difficult in consequence of the fact 
that the dependence of c on K therein could not be specified Q priori. 

s(um/cm)2 = 1, (2.11) 

I ~ + i B I ( u 1 / ~ r n ) 2  (c/cd2- (2.12) 

3. EQUATIONS OF MOTION FOR THE AIR 

The equations of motion governing a small perturbation of a two- 
dimensional shear flow U(y)  in an inviscid incompressible fluid of density 
pa are (see Appendix) 

Pa(% + u u x  + v U,) = - P x ,  (3.1 a) 

Pa(%+ UVz) = -PI0 (3.1 b) 

ux+'uy = 0, (3.1 c) 

where u and ZI denote the x- and y-components of the perturbation velocity, 
p the perturbation pressure, and subscripts partial differentiation. Intro- 
ducing a stream function according to 

u =  - + x ,  v = & ,  (3.2 a, b) 

and assuming (by virtue of linearity) + andp to exhibit the same dependence 
on x and t as 7 in (2.2), we obtain 

P u " u - c ) + ~ -  U,+I = PY (3.3 a) 

PaK2(U--C)+ = P,. (3.3 b) 
Elimination of p then yields 

Equation (3.4), which was studied originally by Rayleigh (1880; also 1945, 
$ 366 (7)), is the inviscid form of the well known Orr-Sommerfeld equation 
(Lin 1955, (1.3.15)). We observe that the omission of the viscous terms 
leads to a (regular) singularity at U = c. 

The subsequent analysis will be carried out in terms of the dimensionless 
variables (, w, and 4, defined by 

( u - C)$hUU - [K2( u - c) + U,,]+ = 0. (3.4) 

6 = ky, u- c = U l W ( t ) ,  $ = U14(5)7I(x, 4, (3.5 a, b, 4 
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Introducing where U, is the arbitrary reference velocity introduced in (2.3). 
these in (3.4), we obtain 

4"- [1+ (w"/w)]+ = 0. (3.6) 
The boundary conditions to be imposed on 4 are dictated by the require- 

ments that the interface (originally y = yo)  shall remain a streamline and 
that the disturbance shall die out at infinity. Noting that the horizontal 
velocity relative to the wave is approximately U -  c, we obtain for the first 
condition 

$ , / (U-c )= ikq  a t y = y o + q  = y o .  (3.7) 
We remark that the approximation u - c = U -  c assumes only that the slope 
of the wave is small (amplitude small compared with wavelength, that is, 
ka < 1). If y were interpreted as the distance above a fixed plane it also 
would be necessary (in order to linearize the boundary condition) to assume 
the amplitude to be small compared with the length of any region in the 
neighbouring flow over which local variations must be considered. This 
would be a rather severe restriction in consequence of the large velocity 
gradients near the boundary, but it may be avoided by assuming y to specify 
the streamline that would have been a distance y above the undisturbed 
interface and applying the boundary condition at y =yo. Perhaps the 
most satisfactory proof of this statement is to replace the independent 
variables x and y in (3.1 a, b, c) by x and Y, where Y is the total (as opposed 
to perturbation) stream function (von Mises transformation), write U = U(Y) 
rather than U(y),  linearize with respect to the velocity perturbations about 
U = U(Y) ,  and apply the boundary condition (3.7) at Y = Yo, where 
Uo = U(Yo).  The form of the equations is simpler in terms of y, however, 
and we shall retain it with the implicit understanding that it specifies a given 
streamline, rather than distance from a fixed plane. We also note that the 
boundary condition may be applied at any streamline, y =yo, for which 
ky, < 1 ; thus, Uo need not vanish, and it is not necessary to prescribe the 
shear profile all the way to the surface. In effect, we assume that a small 
transition layer, within which 0 < U < U,, moves with the surface wave". 

Introducing the dimensionless variables of (3.5), the condition (3.7) 
becomes 

4 0  = "0, (3.8 a) 
where the zero subscripts imply 5 = to. The requirement that the dis- 
turbance die out at infinity yields simply 

+ - t o  a s f - t c o .  (3.8 b) 

The perturbation pressure is given by (3.3 a) or, in terms of the dimension- 
less variables, by 

p = pau :  k(W4'  - w'4)q. (3.9) 
* The assumptions ky, < 1 and I U-cl 9 v alone, without further linearization 

or the neglect of the dominant viscous forces, imply that p and v may be assumed 
constant across the transition layer within the approximations of Prandtl's boundary- 
layer theory, as applied to the disturbed flow. 



192 John W. Miles 

Comparing (3.9) with (2.3) at 6 = to and invoking (3.8 a) we obtain 

u + ig = w0(& - wh). (3.10) 
This completes the formulation of the aerodynamic boundary value problem, 
which now is stated by (3.6), (3.8 a, b), and (3.10). 

4. IMPLICIT SOLUTION 

We next obtain an implicit integral expression for u + i/3, both in order 
to illuminate the decisive role of the singularity at U = c (m = 0) and as the 
first step in an approximate determination of 8. Multiplying both sides 
of (3.6) by (be, the complex conjugate of +, integrating from c = to to f = 00, 

integrating +”+# by parts, and imposing the boundary conditions (3.8 a, b), 
we obtain 

j; W+ [ I +  ( w ” / w ) ~  /+ I21  d t  = [+#+I: = - wo 4;. (4.1) 

Now, from (3.10), since w is approximately real, is given by the imaginary 
part of wo +:, and the only contribution of the integral in (4.1) to this imaginary 
part must come from the singularitfr at w = 0. It follows that 

The path of integration in (4.2) must be indented either over or under 
the singularity at ( = &, where w(&) = 0, and on this choice depends the 
sign of ,fl. This rather delicate and evidently decisive question has been 
discussed in some detail by Lin (1955, 9 4.3 and ch. 8), and we merely state 
the conclusion that the path must be indented under the singularity*. 
Applying the calculus of residues then yields 

where the subscript c implies evaluation at f = fc .  
The result (4.3) implies that, in the absence ofdissipativeforces, a motion 

of the type (2.2) will be stable or unstable according as the curvature of the 
wind profile (U”) at that elevation where the wind speed is equal to the 
wave speed is positive or negative, respectively. We infer from this result 
that : 

(1) only those waves having speeds in that range of the wind profile for 
which - U“ is large may be expected to grow ; the lower limit for c 
may be imposed by the existence of a sub-layer of linear profile or 
by the interaction of the waves with the wind profile, while the 
upper limit will be rather less than the wind speed outside of the 
boundary layer ; 

(2) in the initial phases of wave formation, those waves having speeds 
well down in the profile (large - U“) may be expected to predominate ; 

* This assumes c = cw is real. In the next approximation # { c }  > 0, so that the 
singularity lies slightly above the real axis (assuming W;/EU, < 0), and the path of 
integration in (4.2) passes under the singularity without the necessity of indentation. 

B = -~l+c12(w:/w:), WC = 0, (4-3) 
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(3) experimental measurements of aerodynamic forces on stationary 
wave models (Stanton et alia 1932; Motzfield 1937; Thijsse 1951) 
may not yield significant values of such parameters as Jeffreys’ 
sheltering coefficient, since the point at which U = c then occurs 
right at the boundary. 

We remark that the result (4.3) is directly related to Taylor’s (1915) 
theorem that the momentum transfer from mean to disturbed flow in a 
shear profile is proportional to - U“; alternatively, the result may be 
interpreted in terms of the vortex theory of instability developed by Lin 
(1955, § 4.4), following earlier ideas of von KBrmBn (see also Rayleigh 1945, 
vol. 2, p. 391). 

We now proceed to develop an integral expression for 4, which may be 
used for an approximate determination of /3 in conjunction with (4.3). 
We start from (3.6) in the modified form 

(Wff - w’lp)’ = w+. (4.4) 

. Integrating both sides of this equation between 5 = .fc and [ = co, imposing 
the boundary condition (3.8 b) at [ = co, and noting that 

by virtue of the fact that +‘ can have only a logarithmic singularity at the 
singular point of the differential equation*, we obtain 

The principal attribute of (4.6), aside from the smoothing effect intrinsically 
associated with integration, is that it is locally insensitive to errors in (the 
approximation to) + in the neighbourhood of the singular point w = 0. 

We conclude this section by remarking that the approximations 
introduced up to this point may be regarded as inherent in our model. 
Additional approximations will be made in the following sections in order 
to simplify the matheinatical analysis, but these are, at least in principle, 
subject to improvement without modification of the model. 

5 .  APPROXIMATE SOLUTION FOR /I 
The exact solution of the differential equation (3.6) in terms of known 

functions for typical velocity profiles does not appear to be possible. The 
usual (Heisenberg) expansion in the parameter ka for the problem of thin 
(in wavelengths) boundary layers (Lin 1955, 9 5.5) is not well suited to the 
relatively thick turbulent boundary-layer profiles that are of interest in the 
present problem. 

* It may be proved that 

4 = +c[l +(w: w ~ ) ( l - ~ c ) ~ o g ( S - ~ J +  O(t--fC)l 
in the neighbourhood of 4 = f c  (cf. Rayleigh 1945, 5 369; Lin 1955, (8.1.8)). 

F.M. N 
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We shall attempt here only an approximate determination of p through 
(4.6), using the approximation 

4 = w(0e-t. (5.1) 
I t  is evident that (5.1) satisfies the boundary conditions (3.8 a, b), while the 
differential equation (3.6) is satisfied if either lwrrl B jwI (small 5)  or 
lwnl < Iw( (large t). These conditions are not, of course, sufficient to 
guarantee that the approximation (5.1) is uniformly valid for all f ;  in 
particular, it fails completely at the singular point 5,. We anticipate, 
nevertheless, that, in conjunction with (4.3) and (4.6), it will lead to an 
approximation to the magnitude of 4, which is adequate for at least the 
qualitative description of the spectral distribution of the parameter 8. 
We shall be content with this goal, remarking that the difficulties associated 
with the accurate determination of wind profiles scarcely justify anything 
more elaborate at this time. 

Substituting (5.1) in (4.6) and that, in turn, in (4.3), we obtain, 

We shall evaluate the integral in (5.2) for a logarithmic profile, which, 
for turbulent flow over water, has the support of both theory (see Coles 
(1956) for a recent survey) and experiment (Roll 1948; see also Hay 1955 ; 
Ellison 1956). The form that most directly fits the description of $ 3  
above is 

WY) = Uo + u, log(Y/Yo), (5.3 a) 

where Uo is the lower bound of the logarithmic profile and U, the reference. 
velocity, which is now defined as the coefficient of the natural logarithm in 
the velocity profile. The majority of experimental results are presented 
in the form (except that common logarithms are apt to be used) 

U(Y> = (U*/KYOg(Y/xo), (5.3 b) 

where U, = ( ~ ~ / p ~ ) ~ / ~  is Prandtl’s shearing stress uelocity, 7, the shear stress 
at the surface, K KBrmdn’s universal turbulence constant, and x, an effective 
roughness parameter, in the notation of Roll (1948) ; the definitions of U, 
and K are those commonly adopted, but z, has been used in somewhat 
different senses by different writers. We remark that the reference pressure 
pa U f  now is proportional to the shearing stress T ~ .  

The distribution of (5.3) evidently holds only for a limited range of U. 
We designate the wind speed at the outer edge of this range as U, ; for our 
purposes, U, = lOU, = 25U, is a rough but adequate approximation for 
the wind speed at two metres above the water*. The determination of 
the lower limit of validity, Uo, is both more important and more uncertain, 
reflecting the fact that, in reality, there is not a sharp transition from 

*The reference position of two metres is that adopted by Roll; at 10 metres 
U ,  = 30U, might be a better estimate. 
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Estimates of both 

Substituting (5.3 a) or (5.3 b) in (3.5 b) and (5.2) and noting that, by 

(5.4 a, b). 

logarithmic profile to sub-layer (laminar or otherwise). 
Uo and xo will be discussed in Q 7. 

definition, 
c = uo + ~l~og(Yc/Yo) = ~l log(Yc/~o)~  

we obtain w = log(5/tc), (5.5). 

(5.6 a), 

(5.6 b). 

The integral in (5.6 b) may be evaluated for small or moderate values 
of the argument 4, by writing the range of integration (1, m) as the 
difference (0, m)-(O, l), identifying the infinite integral as the Laplace 
transform of log2u [ErdClyi 1954, $4.6(13)], and evaluating the finite 

.. 
IQ3 3x10m3 3x1Q2 10'' 3x10-' I 3 

6, 
Figure 1. The function /l (ky,), as defined by (5.6) and (5.7) 

integral as a power series, following the expansion of the exponential. 
An asymptotic development for large 5, may be obtained by the usual device 
of repeated integration by parts or by expanding log2 u in powers of (u - 1). 
The end results of these operations are 

B ( 5 c )  = &{W+ log2(Y5c)+2 2: +} 9 (5.7 a) 

P(&) - 477t;3e-a6e( 1 - 65;l + 3 1R2 ...), (5.7 b) 
where logy = 0.5772 is Euler's constant. We find that f l  has a maximum 
value of 10.2 at tC = 0.017 and that (5.7 a) is adequate for numerical calcul- 
ation over the range of practical interest (5, < 1). The asymptotic series 
(5.7 b), on the other hand, is accurate only for very large tc and is of interest 
primarily as an indication of the exceedingly sharp cut-off of the damping 
ratio for very large values of Ky,. 

00 ( - ) " f "  2 

1 

The numerical values of B are plotted in figure 1. 
N Z  
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6. DAMPING RATIO vs WAVE SPEED 

We now proceed to express ,9 and 5, as functions of the dimensionless 
The corresponding wave number for gravity waves w'ave speed c/Ul. 

may be determined from (2.8 a), whence 

Solving (5.4 b) for y ,  and multiplying by (6.1) then yields 

where we have introduced the dimensionless, wind-profile parameter 

The function kyc/i2 is plotted in figure 2. 
.as calculated from (5.7 a), and gals, as given by (2.10), namely, 

are plotted in figures 3 and 4 for values of i2 that appear to be typical (cf. 0 7). 

k = g/c2. (6.1) 

(6.2) 

sz = gx,/u;. (6.3) 

Cab = (Ul/C)"BCQ( ~1/c)2~'u11, (6.4) 

6, = iiy, = Q( Ul/c)2ee'u1, 

The corresponding values of p, 

I 

I 

B 

2 

0 

0 

6 

4 

2 

0 
0 2 4 6 6 1 0  

C/UI 

Figure 3. The parameter /3, as determined 
by ( 5 . 7 4  and (6.2); cf. figures 
1 and 2. 

c /UI 

Figure 2. The variation of ky, with wave 
speed; see (6.2) and (6.3) 

The damping ratio associated with viscous action in the water, based on 
the assumptions stated in 8 1 (free surface with laminar flow), is given by 
(Lamb 1945, $348) 

Eliminating k through (6.1) and superimposing 5, and 5,, we obtain 

.Equating this expression to zero yields 

5, = -4v, k/c. (6.5) 

(6.6) 1: = p s q  c 2 -  4vw gc-3. 

u, = (4vw g/s)""[(c/ U,)f3]-"3 (6.7 a) 
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for the wind speed at which the energy available from the air stream is just 
sufficient to maintain a small amplitude gravity wave of speed c against 
laminar dissipation in the water. If we take the c.g.s. numerical values 
vw = g = 980, and s = 1.2 x 

U, = 32[(c/U,)~]-1,3cm/sec for 5 = 0. (6.7 b) 

This result is plotted in figure 5 using the values of /? given in figure 3. 

(6.7 a) reduces to 

Figure 5.  

0 2 4 6 8 10 

c/u,  
Figure 4. Cas, as given by (6.4). 

24 

16 

Ul 

8 

2 4 6 8 10 
0 
0 

C/UI 
The minimum reference speed U, for the initiation of gravity 

given by (6.7 b) ; the wind speed at two metres is roughly lOU,. 
waves, as  

It appears from the results of figure 5 that the minimum wind speed 
(at two metres) for the initiation of gravity waves is of the order of magnitude 
of 100 cmfsec and might be as small as 80 cmfsec ; the corresponding wave 
speeds would lie somewhere between 40-50 cmlsec. These figures are close 
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to the respective measurements of Jeffreys (1924) and Scott Russell (1844), 
but it is important not to lose sight of the approximations on which they 
are based. The equivalent value of Jeffreys' sheltering coefficient, as 
given by 

is roughly 0.3 (for IR = 
PJ = P W (  urn - Cl2, (6.8) 

c = 5U1, U,  = lOU,). 

7. THE WIND PROFILE PARAMETERS 

The available measurements on wind profiles over water (see Roll 1948; 
Neumann 1948; Hay 1955; also other papers cited by Ursell 1956 and 
Ellison 1956) all tend to confirm the logarithmic law posed in (5.3), but 
they provide little information on the laminar sub-layer and conflicting data 
on the effective roughness parameter. We consider here three possibilities. 

(a)  Aerodynamically smooth $ow 
If the departures from a plane surface do not penetrate the laminar 

sub-layer and the neglect of surface currents is justified the velocity profile 
should resemble that for flow near a smooth wall. Nikuradse's data yields 
(Prandtl 1952, p. 126) 

corresponding to K = 0.40 and xo = va/9.06U, in (5.3 b). We then have 
Z, = 1.7 x 10-2U~1, (7.2 a, b) 

in c.g.s. units (g = 980, v, = 0-154). 
Roll has made measurements for wind blowing over smooth ponds 

which yield values of zo which are not only appreciably smaller than those 
predicted by (7.2 a) for U, < 10 cm/sec but also decrease with U,. The 
scatter in these data for small U ,  is considerable, but the trend is quite 
definite. The most plausible explanation would appear to be in the exis- 
tence of a surface current in the water, but further investigation of this point 
is desirable*. 

If the logarithmic profile of (7.1) is matched in ordinate and slope to 
a linear profile it is found that U, = 7*8U, at U, y0/va = 1 / ~  (cf. Roll 1948). 
An examination of pipe data (Prandtll952, p. 128) reveals that the logarith- 
mic and linear profiles are established only for U / U ,  > 15 and U / U ,  < 5, 
respectively, but the logarithmic profile does not appreciably overestimate 

U(y>/U# = 5.75 log,& U , ~ / V , )  +5.50, (7.1) 

!2 = 2 * 7 U ~ ~ ,  

U"/U' as a function of U for U > 8 U,. 

( 6 )  Moderate wind over wavy water 
Roll found that for values of U ,  between about 10 and 30cmlsec and 

heights up to two metres above a disturbed surface his measurements 
{which exhibited a much smaller scatter than those for U, < 10 cmlsec) 

* Prandtl (1952, p. 130), referring to this data, states that " for values of U, 
below about 10 cm/sec the flow in the lowest 2 metres seems to be laminar ". This 
interpretation is difficult to accept, since his own " universal velocity function " 
(ibid, p. 128) implies a value of y from 1-3 mm for transition at U* = 10 cm/sec. 
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In  terms could be fitted to (7.1) wheny was measured from the wave crests. 
of the distance from the mean surface, he found 

where a was the amplitude of the surface waves. 
z0 = 7 * 3 ~ 1 0 - ~ U ; ; ~ ,  Q = l l*6Ui3. (7.4 a, b) 

It should be recalled that we have defined y as a streamline parameter, so 
that the velocity profile of (7.3) is not directly significant and serves only to 
illustrate the magnitude of possible deviations from (7.1). We shall see 
(figure 6) that the resulting differences in 5, are negligible. 

The results (7.3) and (7.4) are characteristic of aerodynamically smooth 
flow, so that it appears reasonable again to assume that (7.3) is valid down to 
about U, = SU,. 

U/U, = 5.75 logl,[Ua(y + a)/vu] + 1.85, (7.3) 
This implies that 

( c )  Fully developed rough $ow 
It has been argued (cf. Ursell’s (1956) and Ellison’s (1956) remarks) 

from dimensional considerations that, since (i) the apparent roughness 
of the water surface depends on the waves produced by the wind and (ii) the 
roughness parameter in pipe flows is found to be independent of viscosity 
and to depend only on the nature of the roughness for U, zo/vu > 3 (rough 
j low),  zo should be proportional to UE/g for sufficiently rough flow. We 
remark here that this conclusion appears to assume that capillary ripples 
are unimportant in determining the apparent roughness, although this 
would appear doubtful ; nevertheless, Hay (1955) has made measurements 
for values of U ,  between about 25 and 55 cm/sec that tend to confirm this 
hypothesis and lead to the approximate results (which easily might be off 
by as much as 30%; cf. Ellisons’ remarks) 

(7.5 a, b) 

The corresponding value of U,isprobably best estimated as that atyo = 30Z0, 
namely U, = 8.5U,. 

The discrepancy between (7.4) and (7.5) emphasizes the order of 
magnitude of the uncertainties with which we deal; for example, at 
U, = 30cm/sec, where the data of Roll and Hay overlap, the values of z, 
obtained from(7.4 a)and(7.5 a)are 2 x 10-3cm and 7 x cm, respectively. 
In any event, our model cannot be expected to have more than qualitative 
significance for rough flow. 

The foregoing results are illustrated in figures 6 and 7, where we have 
plotted 5, us h ( = 2n/k) for the combinations of data indicated in table 1 
(the values of IR used in the actual calculations were rounded off to the 
parenthetic values in order to reduce the numerical work; the rounding 
errors are smaller than the other uncertainties). The differences in xo for 
given U+ are, seen to be relatively unimportant. We again emphasize 
that the results for the higher wind speeds must be regarded as especially 
dubious in consequence of the linearization. The value of - 5 ,  given by 
(6.5) also is plotted as a reference base, but the actual damping from the 

X, = 8 x 10-5Ut, Q = 1.25 x lod2. 
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water almost certainly would be very much larger for values of U ,  as high 
as 30 cmfsec. The values of cf U, = 2,3,4,  and 5, corresponding to various, 
possible lower limits U, = c are marked off; on the basis of the preceding 

u* 
(cmlsec) 

5 

10 

10 

30 

30 

3.4 x 10-3 

1.7 >. 10-3 

7.3 x 10-3 

2.4 x 10-3 

7.2 N lo-' 

u200 

(cmisec) 

110 

290 

250 

850 

600 

n 

2.2w 10-2 
(2 L; 10-Z) 
2.7= 10-3 
(3 x 10-3) 
1.2 v 10-2 

(10-2) 
4.3 x 10-3 
(3 >, 10-3) 
1.2 x 10-2 

(10-2) 

Table 1. The parenthetic values for R were used in calculating figure 6. 

X tcm) 
Figure 6. Damping ws wavelength for the data of table 1. 

remarks, the logarithmic profile probably does not overestimate 5, for 
c > 4U,( = lOU,) but certainly would do so for values of c as low as ZU, 
(= 5U*). 
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4 n  
m 
0 

3 10 30 I00 
(cm) 

Figure 7. Linear plot of cases us and ale; cf. table 1 and figure 6. 

8. MEAN TANGENTIAL WAVE DRAG 

A rough check on the mean value of j3 (the minimum wind speed estimates 
of 9 6 provide a check only on values of p in the neighbourhood of its maxi- 
mum) may be obtained by calculating the (space or time) mean tangential 
drag on the waves, namely, 

Tx = q P n ( W * l .  
Munk (1955), using data from Van Dorn’s (1953) experiments, has obtained 
the expression 

where c’= 0.68 x 10-6 if U ,  is measured at 10 metres above the surface. 
Let S(k, 0) be the power spectral density of the surface” in the notation 

of Eckart (1953 a), 0 being the angle between wavefront normal and wind 
direction (so that the effective component of the wind is Ucos 0) ; the power 
spectral density of the wave slope then is k2S(K,0), and substituting p,, 
in (8.1) from (2.3) yields 

7% = C’p,(gVw)-1i3u~, (8.2) 

The spectrum for a fully developed sea (Neumann, as cited by Munk 
(1955)) may be approximated by 

kW(K,O)k dkd0 = 4(2.rr)-li2001~2e-2(c/u m ) ‘d(c/Um) de(10I < iieo), 1 
1 J8.4) 

= 0 (14 > 34J, J 

where u2 is the ,mean square slope, which may be expressed in the form 

* The surface displacement now is assumed to be composed of a distribution of 
sine waves having random phases. 
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with b = 1.1 x lo4 (Cox & Munk 1954). 
sheltering coefficient rS, (s in his notation), defined such that 

where, for our model (in which Ucos O would appear as the effective wind 
speed),f(Oo) is simply the mean value of cos20 over ( - +Oo, $6,). Substituting 
(8.4) and (8.5) in (8.3) and comparing the result with (8.2) and (8.6), we 
find 

Munk (1955) also introduces a 

c' = PH bf(bO), (8.6) 

(8.7) 

Using the values of /3 given by figure 3 with s1 = (the value most 
likely to be representative of a fully developed sea), assuming /3 E 0 for 
c < 3U1, andchoosing U,  = 12U1(at lOmetresabovethesurface),weobtain 
PM = 2.0 x 1F2, which compares with the value 1e2 inferred by Munk 
from observed rates of wave growth. The corresponding value of c', 
using b = 1-1 x 1 e 4 ,  is 2-1 x 10V cos2B; with Munk's value of 80, namely 
130", we have c' = 1.5 x 10V, which compares with the experimental value 
of 0.68 x 1e6. We emphasize, however, that our estimate of BlcI might 
be off by a factor of two either way in consequence of our estimates of SZ 
.and co. 

We conclude that the calculated value of c' is in agreement with the 
experimental value in at least order of magnitude, from which we infer 
that the mean value of /3, weighted as in (8.7), also is of the right order of 
magnitude. 

- 

9. CONCLUSIONS 
We conclude that the model of an inviscid shear flow in air over water 

having zero mean motion provides an explanation of the generation of 
gravity waves which is in qualitative agreement with observations of mini- 
mum wind speed and mean tangential drag. Quantitative comparisons 
would require, on the theoretical side, a more accurate solution of the 
boundary value problem, and, on the experimental side, much more precise 
data on wind profiles. We also emphasize that the model is intrinsically 
limited by the neglect of turbulent interaction between surface wave and 
wind profile and the linearization of the equations of motion. Finally, we 
note that the results of $2-5, regarding energy transfer from shear flows 
to surface waves, are applicable to  such problems as the flutter of membranes 
and panels. 

I am grateful, to Lester Lees of the California Institute of Technology, 
Nicholas Rott of Cornell University, Cark Eckart, Walter Munk and Charles 
Cox of the Scripps Institute of Oceanography, and my colleague Kurt 
Forster, for helpful discussion and criticism during the course of the above 
research. 
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The Euler and continuity equations for a viscous incompressible fluid 
can be written 

aui aui 1 apij 
- + U j Z  = - - 
at 3 P axj’ 

aui 
ax,=o, 

where xi denotes a Cartesian coordinate, ui a velocity component, p.. a 
stress tensor component, p the fluid density, and the usual summation 
convention is implied. 

l.3 

We resolve the dependent variables according t o  

(A2 a, b) 
I II 

ui = ui+u; + u;, pij = Pii +p,+p,, 
where Ui + ui and Pij +pij represent a solution to (A1 a, b) having the two- 
dimensional (xl and x2) mean values (with respect to either x3 or t )  Uj 
and Pi* plus turbulent fluctuations ui and?;, and u; andp; represent a small 
perturbation with respect to this solution. Substituting (A2 a, b) in (A1 a), 
neglecting terms of second order in the perturbation flow, and invoking 
the requirement that the unperturbed flow satisfy (A1 a), we obtain 

au; 
axi 
- = 0. 

Taking mean values with respect to x3, we may place the results in the form 

where we have introduced the perturbation Reynolds stress (invoking the 
,equations of continuity for both u; and u; in its derivation) - -  

(-45 a) 
I I, I I, 

- 
r j  = p(ui uj + uj ui )  

- - 
I If 

= P[Ui(Uj -24;) +u;(u; -&;I, 
with (A5 b) following from (A5 a) by virtue of 2 = 0. 

Equations (A4 a, b) are the equations of motion governing the two- 
dimensional perturbation of a two-dimensional shear flow if two-dimensional 
is understood to imply mean value with respect to the transverse coordinate. 
They differ from the equations of motion for a non-turbulent perturbation 
flow only in the presence of t h e x ,  which represent the interaction between 
the fluctuations in the original and perturbation flows and, as might have 
been anticipated, are the first order perturbations of the usual Reynolds 
stresses u,’. 

Equations (3.1 a, b, c) follow from ( A h ,  b) if we take x1 = x, x2 = y ,  
U, = U(y),  U, = U3 = 0, ~1 = U, U; = v,  p‘!. = -S,p, and rij = 0. 

- - - 
23 
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NOTE ADDED AT PROOF STAGE 

A stochastic analysis recently presented by Phillips (1957) develops a 
model which appears more realistic than that proposed by Eckart (1936 b) 
and arrives at results in reasonable agreement with experiment. It seems 
that the mechanism proposed by Phillips is complementary to that 
presented here, but further investigation is required to establish the 
appropriate connections. 


